使用python实现递归版汉诺塔示例(汉诺塔递归算法)

利用python实现的汉诺塔。带有图形演示

代码如下:

from time import sleep

def disp_sym(num, sym): print(sym*num, end=”)

#recusiondef hanoi(a, b, c, n, tray_num): if n == 1: move_tray(a, c) disp(tray_num) sleep(0.7)

else: hanoi(a, c, b, n-1, tray_num) move_tray(a, c) disp(tray_num) sleep(0.7) hanoi(b, a, c, n-1, tray_num)

def move_tray(a, b): for i in a: if i != 0: for j in b: if j != 0: b[b.index(j) – 1] = i a[a.index(i)] = 0 return b.append(i) b.pop(0) a[a.index(i)] = 0 returndef disp(tray_num): global a, b, c for i in range(tray_num): for j in [‘a’, ‘b’, ‘c’]: disp_sym(5, ‘ ‘) eval(‘disp_sym(tray_num – ‘ + j + “[i], ‘ ‘)”) eval(‘disp_sym(‘ + j + “[i], ‘=’)”) disp_sym(1, ‘|’) eval(‘disp_sym(‘ + j + “[i], ‘=’)”) eval(‘disp_sym(tray_num – ‘ + j + “[i], ‘ ‘)”)

print()

print(‘—————————————————————————‘)

tray_num=int(input(“please input the number of trays:”))tray=[]for i in range(tray_num): tray.append(i + 1)a=[0]*tray_numb=a[:]c=a[:]

a = tray[:]disp(tray_num)hanoi(a, b, c, tray_num, tray_num)