linux应用技巧,序列化存储python对象

  什么是持久性?
  持久性的基本思想很简单。假定有一个 python 程序,它可能是一个管理日常待办事项的程序,您希望在多次执行这个程序之间可以保存应用程序对象(待办事项)。换句话说,您希望将对象存储在磁盘上,便于以后检索。这就是持久性。要达到这个目的,有几种方法,每一种方法都有其优缺点。
  
  例如,可以将对象数据存储在某种格式的文本文件中,譬如 csv 文件。或者可以用关系数据库,譬如 gadfly、mysql、postgresql 或者 db2。这些文件格式和数据库都非常优秀,对于所有这些存储机制,python 都有健壮的接口。
  
  这些存储机制都有一个共同点:存储的数据是独立于对这些数据进行操作的对象和程序。这样做的好处是,数据可以作为共享的资源,供其它应用程序使用。缺点是,用这种方式,可以允许其它程序访问对象的数据,这违背了面向对象的封装性原则 — 即对象的数据只能通过这个对象自身的公共(public)接口来访问。
  
  另外,对于某些应用程序,关系数据库方法可能不是很理想。尤其是,关系数据库不理解对象。相反,关系数据库会强行使用自己的类型系统和关系数据模型(表),每张表包含一组元组(行),每行包含具有固定数目的静态类型字段(列)。如果应用程序的对象模型不能够方便地转换到关系模型,那么在将对象映射到元组以及将元组映射回对象方面,会碰到一定难度。这种困难常被称为阻碍性不匹配(impedence-mismatch)问题。
  
  对象持久性
  如果希望透明地存储 python 对象,而不丢失其身份和类型等信息,则需要某种形式的对象序列化:它是一个将任意复杂的对象转成对象的文本或二进制表示的过程。同样,必须能够将对象经过序列化后的形式恢复到原有的对象。在 python 中,这种序列化过程称为 pickle,可以将对象 pickle 成字符串、磁盘上的文件或者任何类似于文件的对象,也可以将这些字符串、文件或任何类似于文件的对象 unpickle 成原来的对象。我们将在本文后面详细讨论 pickle。
  
  假定您喜欢将任何事物都保存成对象,而且希望避免将对象转换成某种基于非对象存储的开销;那么 pickle 文件可以提供这些好处,但有时可能需要比这种简单的 pickle 文件更健壮以及更具有可伸缩性的事物。例如,只用 pickle 不能解决命名和查找 pickle 文件这样的问题,另外,它也不能支持并发地访问持久性对象。如果需要这些方面的功能,则要求助类似于 zodb(针对 python 的 z 对象数据库)这类数据库。zodb 是一个健壮的、多用户的和面向对象的数据库系统,它能够存储和管理任意复杂的 python 对象,并支持事务操作和并发控制。(请参阅参考资料,以下载 zodb。)令人足够感兴趣的是,甚至 zodb 也依靠 python 的本机序列化能力,而且要有效地使用 zodb,必须充分了解 pickle。
  
  另一种令人感兴趣的解决持久性问题的方法是 prevayler,它最初是用 java 实现的(有关 prevaylor 方面的 developerworks 文章,请参阅参考资料)。最近,一群 python 程序员将 prevayler 移植到了 python 上,另起名为 pypersyst,由 sourceforge 托管(有关至 pypersyst 项目的链接,请参阅参考资料)。prevayler/pypersyst 概念也是建立在 java 和 python 语言的本机序列化能力之上。pypersyst 将整个对象系统保存在内存中,并通过不时地将系统快照 pickle 到磁盘以及维护一个命令日志(通过此日志可以重新应用最新的快照)来提供灾难恢复。所以,尽管使用 pypersyst 的应用程序受到可用内存的限制,但好处是本机对象系统可以完全装入到内存中,因而速度极快,而且实现起来要比如 zodb 这样的数据库简单,zodb 允许对象的数目比同时在能内存中所保持的对象要多。
  
  既然我们已经简要讨论了存储持久对象的各种方法,那么现在该详细探讨 pickle 过程了。虽然我们主要感兴趣的是探索以各种方式来保存 python 对象,而不必将其转换成某种其它格式,但我们仍然还有一些需要关注的地方,譬如:如何有效地 pickle 和 unpickle 简单对象以及复杂对象,包括定制类的实例;如何维护对象的引用,包括循环引用和递归引用;以及如何处理类定义发生的变化,从而使用以前经过 pickle 的实例时不会发生问题。我们将在随后关于 python 的 pickle 能力探讨中涉及所有这些问题。
  
  一些经过 pickle 的 python
  pickle 模块及其同类模块 cpickle 向 python 提供了 pickle 支持。后者是用 c 编码的,它具有更好的性能,对于大多数应用程序,推荐使用该模块。我们将继续讨论 pickle,但本文的示例实际是利用了 cpickle。由于其中大多数示例要用 python shell 来显示,所以先展示一下如何导入 cpickle,并可以作为 pickle 来引用它:
  
  >>> import cpickle as pickle
  现在已经导入了该模块,接下来让我们看一下 pickle 接口。pickle 模块提供了以下函数对:dumps(object) 返回一个字符串,它包含一个 pickle 格式的对象;loads(string) 返回包含在 pickle 字符串中的对象;dump(object, file) 将对象写到文件,这个文件可以是实际的物理文件,但也可以是任何类似于文件的对象,这个对象具有 write() 方法,可以接受单个的字符串参数;load(file) 返回包含在 pickle 文件中的对象。
  
  缺省情况下,dumps() 和 dump() 使用可打印的 ascii 表示来创建 pickle。两者都有一个 final 参数(可选),如果为 true,则该参数指定用更快以及更小的二进制表示来创建 pickle。loads() 和 load() 函数自动检测 pickle 是二进制格式还是文本格式。
  
  清单 1 显示了一个交互式会话,这里使用了刚才所描述的 dumps() 和 loads() 函数:
  
  清单 1. dumps() 和 loads() 的演示
  welcome to pycrust 0.7.2 – the flakiest python shell
  sponsored by orbtech – your source for python programming expertise.
  python 2.2.1 (#1, aug 27 2002, 10:22:32)
  [gcc 3.2 (mandrake linux 9.0 3.2-1mdk)] on linux-i386
  type “copyright”, “credits” or “license” for more information.
  >>> import cpickle as pickle
  >>> t1 = (‘this is a string’, 42, [1, 2, 3], none)
  >>> t1
  (‘this is a string’, 42, [1, 2, 3], none)
  >>> p1 = pickle.dumps(t1)
  >>> p1
  ”(s’this is a string’\ni42\n(lp1\ni1\nai2\nai3\nantp2\n.”
  >>> print p1
  (s’this is a string’
  i42
  (lp1
  i1
  ai2
  ai3
  antp2
  .
  >>> t2 = pickle.loads(p1)
  >>> t2
  (‘this is a string’, 42, [1, 2, 3], none)
  >>> p2 = pickle.dumps(t1, true)
  >>> p2
  '(u\x10this is a stringk*]q\x01(k\x01k\x02k\x03entq\x02.’
  >>> t3 = pickle.loads(p2)
  >>> t3
  (‘this is a string’, 42, [1, 2, 3], none)
  
  注:该文本 pickle 格式很简单,这里就不解释了。事实上,在 pickle 模块中记录了所有使用的约定。我们还应该指出,在我们的示例中使用的都是简单对象,因此使用二进制 pickle 格式不会在节省空间上显示出太大的效率。然而,在实际使用复杂对象的系统中,您会看到,使用二进制格式可以在大小和速度方面带来显著的改进。
  
  接下来,我们看一些示例,这些示例用到了 dump() 和 load(),它们使用文件和类似文件的对象。这些函数的操作非常类似于我们刚才所看到的 dumps() 和 loads(),区别在于它们还有另一种能力 — dump() 函数能一个接着一个地将几个对象转储到同一个文件。随后调用 load() 来以同样的顺序检索这些对象。清单 2 显示了这种能力的实际应用:
  
  清单 2. dump() 和 load() 示例
  >>> a1 = ‘apple’
  >>> b1 = {1: ‘one’, 2: ‘two’, 3: ‘three’}
  >>> c1 = [‘fee’, ‘fie’, ‘foe’, ‘fum’]
  >>> f1 = file(‘temp.pkl’, ‘wb’)
  >>> pickle.dump(a1, f1, true)
  >>> pickle.dump(b1, f1, true)
  >>> pickle.dump(c1, f1, true)
  >>> f1.close()
  >>> f2 = file(‘temp.pkl’, ‘rb’)
  >>> a2 = pickle.load(f2)
  >>> a2
  ’apple’
  >>> b2 = pickle.load(f2)
  >>> b2
  {1: ‘one’, 2: ‘two’, 3: ‘three’}
  >>> c2 = pickle.load(f2)
  >>> c2
  [‘fee’, ‘fie’, ‘foe’, ‘fum’]
  >>> f2.close()
  
  pickle 的威力
  到目前为止,我们讲述了关于 pickle 方面的基本知识。在这一节,将讨论一些高级问题,当您开始 pickle 复杂对象时,会遇到这些问题,其中包括定制类的实例。幸运的是,python 可以很容易地处理这种情形。
  
  可移植性
  从空间和时间上说,pickle 是可移植的。换句话说,pickle 文件格式独立于机器的体系结构,这意味着,例如,可以在 linux 下创建一个 pickle,然后将它发送到在 windows 或 mac os 下运行的 python 程序。并且,当升级到更新版本的 python 时,不必担心可能要废弃已有的 pickle。python 开发人员已经保证 pickle 格式将可以向后兼容 python 各个版本。事实上,在 pickle 模块中提供了有关目前以及所支持的格式方面的详细信息:
  
  清单 3. 检索所支持的格式
  >>> pickle.format_version
  ’1.3′
  >>> pickle.compatible_formats
  [‘1.0’, ‘1.1’, ‘1.2’]
  
  多个引用,同一对象
  在 python 中,变量是对象的引用。同时,也可以用多个变量引用同一个对象。经证明,python 在用经过 pickle 的对象维护这种行为方面丝毫没有困难,如清单 4 所示:
  
  清单 4. 对象引用的维护
  >>> a = [1, 2, 3]
  >>> b = a
  >>> a
  [1, 2, 3]
  >>> b
  [1, 2, 3]
  >>> a.append(4)
  >>> a
  [1, 2, 3, 4]
  >>> b
  [1, 2, 3, 4]
  >>> c = pickle.dumps((a, b))
  >>> d, e = pickle.loads(c)
  >>> d
  [1, 2, 3, 4]
  >>> e
  [1, 2, 3, 4]
  >>> d.append(5)
  >>> d
  [1, 2, 3, 4, 5]
  >>> e
  [1, 2, 3, 4, 5]
  
  循环引用和递归引用
  可以将刚才演示过的对象引用支持扩展到循环引用(两个对象各自包含对对方的引用)和递归引用(一个对象包含对其自身的引用)。下面两个清单着重显示这种能力。我们先看一下递归引用:
  
  清单 5. 递归引用
  >>> l = [1, 2, 3]
  >>> l.append(l)
  >>> l
  [1, 2, 3, […]]
  >>> l[3]
  [1, 2, 3, […]]
  >>> l[3][3]
  [1, 2, 3, […]]
  >>> p = pickle.dumps(l)
  >>> l2 = pickle.loads(p)
  >>> l2
  [1, 2, 3, […]]
  >>> l2[3]
  [1, 2, 3, […]]
  >>> l2[3][3]
  [1, 2, 3, […]]
  
  现在,看一个循环引用的示例:
  
  清单 6. 循环引用
  >>> a = [1, 2]
  >>> b = [3, 4]
  >>> a.append(b)
  >>> a
  [1, 2, [3, 4]]
  >>> b.append(a)
  >>> a
  [1, 2, [3, 4, […]]]
  >>> b
  [3, 4, [1, 2, […]]]
  >>> a[2]
  [3, 4, [1, 2, […]]]
  >>> b[2]
  [1, 2, [3, 4, […]]]
  >>> a[2] is b
  1
  >>> b[2] is a
  1
  >>> f = file(‘temp.pkl’, ‘w’)
  >>> pickle.dump((a, b), f)
  >>> f.close()
  >>> f = file(‘temp.pkl’, ‘r’)
  >>> c, d = pickle.load(f)
  >>> f.close()
  >>> c
  [1, 2, [3, 4, […]]]
  >>> d
  [3, 4, [1, 2, […]]]
  >>> c[2]
  [3, 4, [1, 2, […]]]
  >>> d[2]
  [1, 2, [3, 4, […]]]
  >>> c[2] is d
  1
  >>> d[2] is c
  1
  
  注意,如果分别 pickle 每个对象,而不是在一个元组中一起 pickle 所有对象,会得到略微不同(但很重要)的结果,如清单 7 所示:
  
  清单 7. 分别 pickle vs. 在一个元组中一起 pickle
  >>> f = file(‘temp.pkl’, ‘w’)
  >>> pickle.dump(a, f)
  >>> pickle.dump(b, f)
  >>> f.close()
  >>> f = file(‘temp.pkl’, ‘r’)
  >>> c = pickle.load(f)
  >>> d = pickle.load(f)
  >>> f.close()
  >>> c
  [1, 2, [3, 4, […]]]
  >>> d
  [3, 4, [1, 2, […]]]
  >>> c[2]
  [3, 4, [1, 2, […]]]
  >>> d[2]
  [1, 2, [3, 4, […]]]
  >>> c[2] is d
  0
  >>> d[2] is c
  0
  
  相等,但并不总是相同
  正如在上一个示例所暗示的,只有在这些对象引用内存中同一个对象时,它们才是相同的。在 pickle 情形中,每个对象被恢复到一个与原来对象相等的对象,但不是同一个对象。换句话说,每个 pickle 都是原来对象的一个副本:
  
  清单 8. 作为原来对象副本的被恢复的对象
  >>> j = [1, 2, 3]
  >>> k = j
  >>> k is j
  1
  >>> x = pickle.dumps(k)
  >>> y = pickle.loads(x)
  >>> y
  [1, 2, 3]
  >>> y == k
  1
  >>> y is k
  0
  >>> y is j
  0
  >>> k is j
  1
  
  同时,我们看到 python 能够维护对象之间的引用,这些对象是作为一个单元进行 pickle 的。然而,我们还看到分别调用 dump() 会使 python 无法维护对在该单元外部进行 pickle 的对象的引用。相反,python 复制了被引用对象,并将副本和被 pickle 的对象存储在一起。对于 pickle 和恢复单个对象层次结构的应用程序,这是没有问题的。但要意识到还有其它情形。
  
  值得指出的是,有一个选项确实允许分别 pickle 对象,并维护相互之间的引用,只要这些对象都是 pickle 到同一文件即可。pickle 和 cpickle 模块提供了一个 pickler(与此相对应是 unpickler),它能够跟踪已经被 pickle 的对象。通过使用这个 pickler,将会通过引用而不是通过值来 pickle 共享和循环引用:
  
  清单 9. 维护分别 pickle 的对象间的引用
  >>> f = file(‘temp.pkl’, ‘w’)
  >>> pickler = pickle.pickler(f)
  >>> pickler.dump(a)
  
  >>> pickler.dump(b)
  
  >>> f.close()
  >>> f = file(‘temp.pkl’, ‘r’)
  >>> unpickler = pickle.unpickler(f)
  >>> c = unpickler.load()
  >>> d = unpickler.load()
  >>> c[2]
  [3, 4, [1, 2, […]]]
  >>> d[2]
  [1, 2, [3, 4, […]]]
  >>> c[2] is d
  1
  >>> d[2] is c
  1
  
  不可 pickle 的对象
  一些对象类型是不可 pickle 的。例如,python 不能 pickle 文件对象(或者任何带有对文件对象引用的对象),因为 python 在 unpickle 时不能保证它可以重建该文件的状态(另一个示例比较难懂,在这类文章中不值得提出来)。试图 pickle 文件对象会导致以下错误:
  
  清单 10. 试图 pickle 文件对象的结果
  >>> f = file(‘temp.pkl’, ‘w’)
  >>> p = pickle.dumps(f)
  traceback (most recent call last):
  file “”, line 1, in ?
  file “/usr/lib/python2.2/copy_reg.py”, line 57, in _reduce
  raise typeerror, “can’t pickle %s objects” % base.__name__
  typeerror: can’t pickle file objects
  
  类实例
  与 pickle 简单对象类型相比,pickle 类实例要多加留意。这主要由于 python 会 pickle 实例数据(通常是 _dict_ 属性)和类的名称,而不会 pickle 类的代码。当 python unpickle 类的实例时,它会试图使用在 pickle 该实例时的确切的类名称和模块名称(包括任何包的路径前缀)导入包含该类定义的模块。另外要注意,类定义必须出现在模块的最顶层,这意味着它们不能是嵌套的类(在其它类或函数中定义的类)。
  
  当 unpickle 类的实例时,通常不会再调用它们的 _init_() 方法。相反,python 创建一个通用类实例,并应用已进行过 pickle 的实例属性,同时设置该实例的 _class_ 属性,使其指向原来的类。
  
  对 python 2.2 中引入的新型类进行 unpickle 的机制与原来的略有不同。虽然处理的结果实际上与对旧型类处理的结果相同,但 python 使用 copy_reg 模块的 _reconstructor() 函数来恢复新型类的实例。
  
  如果希望对新型或旧型类的实例修改缺省的 pickle 行为,则可以定义特殊的类的方法 _getstate_() 和 _setstate_(),在保存和恢复类实例的状态信息期间,python 会调用这些方法。在以下几节中,我们会看到一些示例利用了这些特殊的方法。
  
  现在,我们看一个简单的类实例。首先,创建一个 persist.py 的 python 模块,它包含以下新型类的定义:
  
  清单 11. 新型类的定义
  class foo(object):
  
  def __init__(self, value):
  self.value = value
  
  现在可以 pickle foo 实例,并看一下它的表示:
  
  清单 12. pickle foo 实例
  >>> import cpickle as pickle
  >>> from orbtech.examples.persist import foo
  >>> foo = foo(‘what is a foo?’)
  >>> p = pickle.dumps(foo)
  >>> print p
  ccopy_reg
  _reconstructor
  p1
  (corbtech.examples.persist
  foo
  p2
  c__builtin__
  object
  p3
  ntrp4
  (dp5
  s’value’
  p6
  s’what is a foo?’
  sb.
  >>>
  
  可以看到这个类的名称 foo 和全限定的模块名称 orbtech.examples.persist 都存储在 pickle 中。如果将这个实例 pickle 成一个文件,稍后再 unpickle 它或在另一台机器上 unpickle,则 python 会试图导入 orbtech.examples.persist 模块,如果不能导入,则会抛出异常。如果重命名该类和该模块或者将该模块移到另一个目录,则也会发生类似的错误。
  
  这里有一个 python 发出错误消息的示例,当我们重命名 foo 类,然后试图装入先前进行过 pickle 的 foo 实例时会发生该错误:
  
  清单 13. 试图装入一个被重命名的 foo 类的经过 pickle 的实例
  >>> import cpickle as pickle
  >>> f = file(‘temp.pkl’, ‘r’)
  >>> foo = pickle.load(f)
  traceback (most recent call last):
  file “”, line 1, in ?
  attributeerror: ‘module’ object has no attribute ‘foo’
  
  在重命名 persist.py 模块之后,也会发生类似的错误:
  
  清单 14. 试图装入一个被重命名的 persist.py 模块的经过 pickle 的实例
  >>> import cpickle as pickle
  >>> f = file(‘temp.pkl’, ‘r’)
  >>> foo = pickle.load(f)
  traceback (most recent call last):
  file “”, line 1, in ?
  importerror: no module named persist
  
  我们会在下面模式改进这一节提供一些技术来管理这类更改,而不会破坏现有的 pickle。
  
  特殊的状态方法
  前面提到对一些对象类型(譬如,文件对象)不能进行 pickle。处理这种不能 pickle 的对象的实例属性时可以使用特殊的方法(_getstate_() 和 _setstate_())来修改类实例的状态。这里有一个 foo 类的示例,我们已经对它进行了修改以处理文件对象属性:
  
  清单 15. 处理不能 pickle 的实例属性
  class foo(object):
  
  def __init__(self, value, filename):
  self.value = value
  self.logfile = file(filename, ‘w’)
  
  def __getstate__(self):
  ”””return state values to be pickled.”””
  f = self.logfile
  return (self.value, f.name, f.tell())
  
  def __setstate__(self, state):
  ”””restore state from the unpickled state values.”””
  self.value, name, position = state
  f = file(name, ‘w’)
  f.seek(position)
  self.logfile = f
  
  pickle foo 的实例时,python 将只 pickle 当它调用该实例的 _getstate_() 方法时返回给它的值。类似的,在 unpickle 时,python 将提供经过 unpickle 的值作为参数传递给实例的 _setstate_() 方法。在 _setstate_() 方法内,可以根据经过 pickle 的名称和位置信息来重建文件对象,并将该文件对象分配给这个实例的 logfile 属性。
  
  模式改进
  随着时间的推移,您会发现自己必须要更改类的定义。如果已经对某个类实例进行了 pickle,而现在又需要更改这个类,则您可能要检索和更新那些实例,以便它们能在新的类定义下继续正常工作。而我们已经看到在对类或模块进行某些更改时,会出现一些错误。幸运的是,pickle 和 unpickle 过程提供了一些 hook,我们可以用它们来支持这种模式改进的需要。
  
  在这一节,我们将探讨一些方法来预测常见问题以及如何解决这些问题。由于不能 pickle 类实例代码,因此可以添加、更改和除去方法,而不会影响现有的经过 pickle 的实例。出于同样的原因,可以不必担心类的属性。您必须确保包含类定义的代码模块在 unpickle 环境中可用。同时还必须为这些可能导致 unpickle 问题的更改做好规划,这些更改包括:更改类名、添加或除去实例的属性以及改变类定义模块的名称或位置。
  
  类名的更改
  要更改类名,而不破坏先前经过 pickle 的实例,请遵循以下步骤。首先,确保原来的类的定义没有被更改,以便在 unpickle 现有实例时可以找到它。不要更改原来的名称,而是在与原来类定义所在的同一个模块中,创建该类定义的一个副本,同时给它一个新的类名。然后使用实际的新类名来替代 newclassname,将以下方法添加到原来类的定义中:
  
  清单 16. 更改类名:添加到原来类定义的方法
  def __setstate__(self, state):
  self.__dict__.update(state)
  self.__class__ = newclassname
  
  当 unpickle 现有实例时,python 将查找原来类的定义,并调用实例的 _setstate_() 方法,同时将给新的类定义重新分配该实例的 _class_ 属性。一旦确定所有现有的实例都已经 unpickle、更新和重新 pickle 后,可以从源代码模块中除去旧的类定义。
  
  属性的添加和删除
  这些特殊的状态方法 _getstate_() 和 _setstate_() 再一次使我们能控制每个实例的状态,并使我们有机会处理实例属性中的更改。让我们看一个简单的类的定义,我们将向其添加和除去一些属性。这是是最初的定义:
  
  清单 17. 最初的类定义
  class person(object):
  
  def __init__(self, firstname, lastname):
  self.firstname = firstname
  self.lastname = lastname
  
  假定已经创建并 pickle 了 person 的实例,现在我们决定真的只想存储一个名称属性,而不是分别存储姓和名。这里有一种方式可以更改类的定义,它将先前经过 pickle 的实例迁移到新的定义:
  
  清单 18. 新的类定义
  class person(object):
  
  def __init__(self, fullname):
  self.fullname = fullname
  
  def __setstate__(self, state):
  if ‘fullname’ not in state:
  first = ‘
  last = ‘
  if ‘firstname’ in state:
  first = state[‘firstname’]
  del state[‘firstname’]
  if ‘lastname’ in state:
  last = state[‘lastname’]
  del state[‘lastname’]
  self.fullname = ” “.join([first, last]).strip()
  self.__dict__.update(state)
  
  在这个示例,我们添加了一个新的属性 fullname,并除去了两个现有的属性 firstname 和 lastname。当对先前进行过 pickle 的实例执行 unpickle 时,其先前进行过 pickle 的状态会作为字典传递给 _setstate_(),它将包括 firstname 和 lastname 属性的值。接下来,将这两个值组合起来,并将它们分配给新属性 fullname。在这个过程中,我们删除了状态字典中旧的属性。更新和重新 pickle 先前进行过 pickle 的所有实例之后,现在可以从类定义中除去 _setstate_() 方法。
  
  模块的修改
  在概念上,模块的名称或位置的改变类似于类名称的改变,但处理方式却完全不同。那是因为模块的信息存储在 pickle 中,而不是通过标准的 pickle 接口就可以修改的属性。事实上,改变模块信息的唯一办法是对实际的 pickle 文件本身执行查找和替换操作。至于如何确切地去做,这取决于具体的操作系统和可使用的工具。很显然,在这种情况下,您会想备份您的文件,以免发生错误。但这种改动应该非常简单,并且对二进制 pickle 格式进行更改与对文本 pickle 格式进行更改应该一样有效。
  
  结束语
  对象持久性依赖于底层编程语言的对象序列化能力。对于 python 对象即意味着 pickle。python 的 pickle 为 python 对象有效的持久性管理提供了健壮的和可靠的基础。在下面的参考资料中,您将会找到有关建立在 python pickle 能力之上的系统的信息。